1,020 research outputs found

    Kinematics of a Trinal-Branch Space Robotic Manipulator with Redundancy

    Get PDF
    AbstractThis paper presents a trinal branch space robotic manipulator with redundancy, due to hash application environments, such as in the station. One end- effector of the manipulator can be attached to the base, and other two be controlled to accomplish tasks. The manipulator permits operation of science payload, during periods when astronauts may not be present. In order to provide theoretic basis for kinematics optimization, dynamics optimization and fault-tolerant control, its inverse kinematics is analyzed by using screw theory, and its unified formulation is established. Base on closed form resolution of spherical wrist, a simplified inverse kinematics is proposed. Computer simulation results demonstrate the validity of the proposed inverse kinematics

    Generation of Oligodendrocyte Progenitor Cells From Mouse Bone Marrow Cells.

    Get PDF
    Oligodendrocyte progenitor cells (OPCs) are a subtype of glial cells responsible for myelin regeneration. Oligodendrocytes (OLGs) originate from OPCs and are the myelinating cells in the central nervous system (CNS). OLGs play an important role in the context of lesions in which myelin loss occurs. Even though many protocols for isolating OPCs have been published, their cellular yield remains a limit for clinical application. The protocol proposed here is novel and has practical value; in fact, OPCs can be generated from a source of autologous cells without gene manipulation. Our method represents a rapid, and high-efficiency differentiation protocol for generating mouse OLGs from bone marrow-derived cells using growth-factor defined media. With this protocol, it is possible to obtain mature OLGs in 7-8 weeks. Within 2-3 weeks from bone marrow (BM) isolation, after neurospheres formed, the cells differentiate into Nestin+ Sox2+ neural stem cells (NSCs), around 30 days. OPCs specific markers start to be expressed around day 38, followed by RIP+O4+ around day 42. CNPase+ mature OLGs are finally obtained around 7-8 weeks. Further, bone marrow-derived OPCs exhibited therapeutic effect in shiverer (Shi) mice, promoting myelin regeneration and reducing the tremor. Here, we propose a method by which OLGs can be generated starting from BM cells and have similar abilities to subventricular zone (SVZ)-derived cells. This protocol significantly decreases the timing and costs of the OLGs differentiation within 2 months of culture

    Changes and mechanisms of apparent resistivity before earthquakes of MS6.0–6.9 on the Chinese mainland

    Get PDF
    China has been conducting fixed continuous apparent resistivity observations since 1967. Up to June 2022, 45 earthquakes with magnitudes of MS6.0–6.9 have occurred within a range of approximately 250 km from normal operating stations. Through literature investigation and data analysis, monitoring stations counted 61 short-medium-term apparent resistivity anomalous changes (i.e., 44 decrease changes, 15 increase changes, and 2 perturbance changes) appearing before 39 of these earthquakes. In this study, we utilize a fault virtual dislocation model to understand the relative deformations around the epicenters before these earthquakes. The comparison results showed that 36 of the 44 decrease changes were in areas with compression enhancement and that 9 of the 15 increase changes were in areas with relative dilatancy. The results from rock petrophysical experiments and the resistivity model of the cracked medium showed decreased changes in the resistivity of water-bearing geomaterials during the successive loading of compressive stress, while the resistivity showed increased changes during the stress unloading process. Moreover, 45 of the 61 apparent resistivity anomalies were consistent with the mechanism of resistivity change under stress. These apparent resistivity anomalous changes before earthquakes may be related to the seismogenic processes such that the resistivity change is caused by medium deformation

    Historical Refugia and Isolation by Distance of the Mud Snail, Bullacta exarata (Philippi, 1849) in the Northwestern Pacific Ocean

    Get PDF
    Many phylogeographic studies on marine organisms in the Northwestern Pacific have supported for the biogeographic hypotheses that isolation in the marginal seas of this region during the Pleistocene glaciation lower sea level led to population genetic divergence, and thus population expansion was a common phenomenon when the sea level rebounded. However, most of these studies were based on maternally inherited mitochondrial DNA markers with limited sample sites and therefore, were unable to reveal detailed pictures encompassing paternal line information covering of the entire range. In this study, we used the mitochondrial cytochrome c oxidase subunit I (COI) and nine nuclear microsatellite loci to investigate the phylogeography of the mud snail, Bullacta exarata (Philippi, 1849), a species endemic to the Northwestern Pacific. We sampled 14 natural populations spanning across 3800 km of the Chinese coastline, essentially covering most of the species distribution range. COI analysis identified a total of 149 haplotypes separated into two distinct groups with nine mutation steps, revealing a prominent phylogeographic structure. Nuclear microsatellite data also demonstrated a similar but weaker genetic structure. The estimated time to the most recent common ancestor between the two COI haplogroups is at ∼0.89 Ma, indicating that B. exarata populations survived the Pleistocene glaciation in the Sea of Japan and the Okinawa Trough, two marginal seas around the species range. The consistent significant patterns of isolation by distance of both COI and microsatellites suggests that limited mobility of adults and short planktonic stage of larvae may have played an important role in promoting or maintaining the genetic differentiation of B. exarata. Results from population demographic analyses support population expansion late in the Pleistocene era

    Comprehensive Analysis of Human Cytomegalovirus MicroRNA Expression during Lytic and Quiescent Infection

    Get PDF
    Background Human cytomegalovirus (HCMV) encodes microRNAs (miRNAs) that function as post-transcriptional regulators of gene expression during lytic infection in permissive cells. Some miRNAs have been shown to suppress virus replication, which could help HCMV to establish or maintain latent infection. However, HCMV miRNA expression has not been comprehensively examined and compared using cell culture systems representing permissive (lytic) and semi-permissive vs. non-permissive (latent-like) infection. Methods Viral miRNAs levels and expression kinetics during HCMV infection were determined by miRNA-specific stem-loop RT-PCR. HCMV infected THP-1 (non-permissive), differentiated THP-1 (d-THP-1, semi-permissive) and human embryo lung fibroblasts (HELs, fully-permissive) were examined. The impact of selected miRNAs on HCMV infection (gene expression, genome replication and virus release) was determined by Western blotting, RT-PCR, qPCR, and plaque assay. Results Abundant expression of 15 HCMV miRNAs was observed during lytic infection in HELs; highest peak inductions (11- to 1502-fold) occurred at 48 hpi. In d-THP-1s, fourteen mRNAs were detected with moderate induction (3- to 288-fold), but kinetics of expression was generally delayed for 24 h relative to HELs. In contrast, only three miRNAs were induced to low levels (3- to 4-fold) during quiescent infection in THP-1s. Interestingly, miR-UL70-3p was poorly induced in HEL (1.5-fold), moderately in THP-1s (4-fold), and strongly (58-fold) in d-THP-1s, suggesting a potentially specific role for miR-UL70-3p in THP-1s and d-THP-1s. MiR-US33, -UL22A and -UL70 were further evaluated for their impact on HCMV replication in HELs. Ectopic expression of miR-UL22A and miR-UL70 did not affect HCMV replication in HELs, whereas miR-US33 inhibited HCMV replication and reduced levels of HCMV US29 mRNA, confirming that US29 is a target of miR-US33. Conclusions Viral miRNA expression kinetics differs between permissive, semi-permissive and quiescent infections, and miR-US33 down-regulates HCMV replication. These results suggest that miR-US33 may function to impair entry into lytic replication and hence promote establishment of latency

    I. Pedagogy

    Get PDF
    本研究では, 慣性を例にして物理学習観が実験や解説への興味・関心, 事後テストにどのように影響しているのかを共分散構造分析でモデル化した。その結果, 「実験への興味」が「解説への関心」に強く影響し, 「事後テストの成績」にも影響していた。また, 解き方よりも答えを重視したり, 公式を丸暗記したりする「過程無視」という学習観が, 「実験への興味」に負の影響を及ぼしていることが明らかになった。これらのことから, 従来から取り組まれてきた実験開発に加えて, 「過程無視」のような物理学習観を見直させることにより, 物理学習への興味・関心を引き, 成績も改善させる可能性があることを示唆した
    corecore